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Mean-field theory of globally coupled integrate-and-fire neural oscillators with dynamic synapses

P. C. Bressloff
Nonlinear and Complex Systems Group, Department of Mathematical Sciences, Loughborough University, Loughborough

Leicestershire LE11 3TU, United Kingdom
~Received 2 February 1999!

We analyze the effects of synaptic depression or facilitation on the existence and stability of the splay or
asynchronous state in a population of all-to-all, pulse-coupled neural oscillators. We use mean-field techniques
to derive conditions for the local stability of the splay state and determine how stability depends on the degree
of synaptic depression or facilitation. We also consider the effects of noise. Extensions of the mean-field results
to finite networks are developed in terms of the nonlinear firing time map.@S1063-651X~99!09108-4#

PACS number~s!: 87.10.1e, 05.45.2a
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I. INTRODUCTION

An important property of synaptic transmission betwe
cortical cells is that the postsynaptic response depends o
temporal sequence of action potentials arriving at the pres
aptic terminal@1#. This form of short-term synaptic plasticit
can lead to either an effective reduction in the amplitude
response~synaptic depression! or an effective increase in
response~synaptic facilitation!. Recent studies of excitator
pathways in slices of cortical pyramidal cells found that, u
der repeated stimulation, the dominant form of short-te
plasticity is synaptic depression, which develops after on
few spikes@2–4#. These studies also established how syn
tic depression could provide a dynamical gain mechan
that increases sensitivity to small input rate changes, as
as an enhanced capability of detecting synchronous act
~see also@5#!. Given the fact that synaptic depression~and
facilitation! can significantly influence the response of sing
neurons to incoming spike trains, it is likely that such facto
also affect behavior at the network level. Indeed, a rec
theoretical investigation of a discrete-time oscillator netwo
suggests that dynamic synapses could support a mecha
for central pattern generation@6#. Moreover, complex pat-
terns of network activity have been found in a rate mo
describing a large population of excitatory neurons with d
namic synapses@7#.

In this paper we analyze the effects of synaptic depres
and facilitation on mode-locking in a globally coupled ne
work of N integrate-and-fire~IF! neuronal oscillators. We
first show how synaptic depression~facilitation! can increase
~decrease! the collective period of oscillations of a phas
locked state~Sec. II!. We then use mean-field theory~MFT!
to derive an evolution equation for the mean activity of t
population in the large-N limit ~Sec. III!. This extends pre-
vious work on activity-independent synapses@8–12# by in-
troducing a second macroscopic variable that determines
total synaptic input.~In the absence of dynamic synapses
latter is directly related to the population activity!. From a
computational viewpoint, one of the interesting properties
the population activity is that it can respond almost instan
neously to sudden changes in input@13,14#. The network is
usually assumed to be in a so-called asynchronous or s
state—all the neurons fire at the same mean rate but
firing times are maximally distributed over the common fi
ing period. We use our mean-field equations to determ
PRE 601063-651X/99/60~2!/2160~11!/$15.00
n
the
n-

f

-

a
-

m
ell
ity

s
nt
k
ism

l
-

n

he
e

f
-

ay
he

e

how the stability of the splay state is affected by dynam
synapses. We also show how mean-field theory can be
tended to take into account the effects of noise~Sec. IV!.
Finally, we discuss an alternative to the mean-field appro
in which the firing times are considered as the fundame
dynamical variables@15–22#. Such an approach is more ge
erally applicable to finite, inhomogeneous networks with
bitrary connectivity, and has recently led to a number
insights concerning the dynamics of strongly coupled spik
neurons@20,21#. We use the firing time approach to dete
mine how the results of mean-field theory can be extende
finite networks~Sec. V!.

II. SYNAPTIC DEPRESSION AND FACILITATION
IN AN IF NETWORK

Consider a homogeneous network ofN globally coupled
integrate-and-fire~IF! neurons. LetU j (t) denote the mem-
brane potential of thej th neuron at timet with j 51, . . . ,N.
Each neuron evolves according to the equation

tm

dUj~ t !

dt
5I 2U j~ t !1

g

N21 (
kÞ j

Rk~ t !, ~2.1!

wheretm is the membrane time constant,g is some global
coupling constant,I is a constant external input, andRk(t)
represents the post-synaptic response induced by the i
spike train from thekth neuron. For convenience we fix th
units of time by settingtm51; typically the membrane time
constant is of the order 10 msec. The sign ofg determines
whether the network is excitatory (g.0) or inhibitory (g
,0). Equation~2.1! is supplemented by the reset conditio
U j (t

1)50 wheneverU j (t)51. Suppose that an isolated a
tion potential evokes a post-synaptic potential~PSP! whose
shape can be represented by ana function,a2te2at. Let Tj

m ,
integerm, denote themth firing time of thej th neuron, that
is, Tj

m5 inf$tuU j (t)>1;t>Tj
m21%. In the case of activity-

independent synapses, the total responseRk(t) at time t can
be obtained by simply summing the responses arising fr
the individual spikes. Therefore, assuming that each sp
takes a timeta to propagate along an axon connecting a
two neurons, the total response isRk(t)5(mPZJ(t2Tk

m),
where

J~t!5a2~t2ta!e2a(t2ta)Q~t2ta!. ~2.2!
2160 © 1999 The American Physical Society
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HereQ(t)51 if t.0 and is zero otherwise.
In order to incorporate the effects of dynamic synaps

we modify Rk(t) along the lines of the phenomenologic
model considered in Refs.@2,4#. ~See also the review of Ab
bott and Marder@23#!. This essentially involves the introduc
tion of an amplitude factorC(Tk

m) that adjusts the magnitud
of the single spike response at timeTk

m based on previous
input history:

Rk~ t !5 (
mPZ

C~Tk
m!J~ t2Tk

m!. ~2.3!

Following the arrival of a spike at a presynaptic terminal,C
is increased in the case of facilitation and decreased in
case of depression. It is mathematically convenient to mo
the former as an additive process and the latter as a mult
cative process in order to avoid possible divergences~see
below!. That is,C˜C1g21 with g.1 for facilitation, and
C˜gC with g,1 for depression. In between spikes,C is
assumed to return to its equilibrium value of one accord
to the exponential process

tc

dC

dt
512C, ~2.4!

where tc is an appropriately chosen time constant (tc can
vary between around 100 msec and a few seconds@4#!. For a
given sequence of jumps at times$Tk

m ,mPZ%, Eq. ~2.4! can
be solved iteratively for the amplitudeC(Tk

m). One finds that

C~Tk
m!511~g21! (

m8,m

ĝm2m821e2(Tk
m

2Tk
m8)/tc,

~2.5!

with

ĝ5g ~depression!, ĝ51 ~ facilitation!. ~2.6!

Suppose that we restrict our attention to phase-locked
lutions of Eq.~2.1! in which every oscillator resets or fire
with the same self-consistent periodT @17,20,21#. The state
of each oscillator is then characterized by a constant ph
fkPR\Z such that the firing times are of the form

Tk
m5~m2fk!T ~2.7!

for all mPZ and k51, . . . ,N. Under such an ansatz, th
amplitude factorC(Tk

m) in Eq. ~2.3! reduces to its steady
state valueC`(T) so that

Rk~ t !5C`~T! (
mPZ

J@ t2~m2fk!T#. ~2.8!

The amplitudeC`(T) is obtained by substituting Eq.~2.7!
into Eqs.~2.5! and~2.6!, and summing the resulting geome
ric series@23#:

C`~T!5
11~g22!e2T/tc

12e2T/tc
~ facilitation!, ~2.9!
s,

e
el
li-

g

o-

se

C`~T!5
12e2T/tc

12ge2T/tc
~depression!. ~2.10!

Note thatC`(T)[1 in the case of activity-independent sy
apses (g51). It is clear from Eq.~2.9! that if g,1 then
C`(T),0 for a range of values ofT, which reflects the
possibility that the series~2.5! diverges. Hence, we do no
use an additive model of synaptic depression. Similar co
ments concerning Eq.~2.10! precludes a multiplicative
model of synaptic facilitation.

For a given set of phasesF5(f1 , . . . ,fN), substitute
Eq. ~2.8! into Eq. ~2.1! and integrate over the intervaltP
(2Tf j ,T2Tf j ) using the reset conditionU j (2f jT)50
andU j (T2f jT)51. This leads to the phase equation

15I @12e2T#1gNC`~T!(
kÞ j

K~fk2f j ,T!, j 51, . . . ,N,

~2.11!

wheregN5g/(N21) and

K~f,T!5 (
mPZ

E
0

T

et2TJ@ t1~m1f!T#dt. ~2.12!

After choosing some reference oscillator, Eq.~2.11! deter-
minesN21 relative phases and the collective periodT.

It is clear from Eq.~2.11! that the presence of dynami
synapses does not alter the basic structure of phase-lo
solutions of Eq. ~2.1!. The phase interaction functio
K(f,T) is simply scaled by the steady-state amplitu
C`(T), the main effect of which is to modify the collectiv
period T. Therefore, just as in the case of activit
independent synapses whereC`(T)[1, the different classes
of solution can be determined using group theoretic meth
@24#. Of particular interest are the so-called maximally sy
metric solutions for which Eq.~2.11! reduces to a single
equation for the collective periodT. The underlying symme-
try of the system guarantees the existence of these solut
assuming that a self-consistentT can be found.~This is a
realization of the equivariant branching lemma@25#!. In this
paper we shall focus on thesynchronousor in-phasesolu-
tion, f j5f for all j 51, . . . ,N, and thesplay or rotating
wave statesf j5f6 j /N. For these maximally symmetric
solutions, Eq.~2.11! takes the form

15I @12e2T#1gNC`~T!

3 (
k51

N21

(
mPZ

E
0

T

et2TJ@ t1~m1kx/N!T#dt,

~2.13!

with x561 corresponding to the splay states andx50 cor-
responding to the in-phase state.

To illustrate the effects of synaptic depression/facilitati
on the collective period of oscillationsT, consider the large-
N limit of Eq. ~2.13! in the case of the splay state (x51).
Using Fourier/Laplace transforms, it can be shown that~see
the Appendix!
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1

N21 (
k51

N21

(
mPZ

J@ t1~m1k/N!T#

5
1

T F J̃~0!2
1

N21 (
nÞ0

J̃~2p in/T!G , ~2.14!

whereJ̃(l) is the Laplace transform of the delay kernelJ(t)
of Eq. ~2.2!,

J̃~l!5
a2e2tal

~a1l!2
. ~2.15!

Therefore, taking the large-N limit of Eq. ~2.13! and noting

that J̃(0)51, we obtain the self-consistency equation

T5 lnF I 1gC`~T!/T

I 211gC`~T!/TG . ~2.16!

The dependence of the~unique! nontrivial solution of Eq.
~2.16! as a function of the degree of synaptic depression
illustrated in Fig. 1 forg.0 @26#. ~In all figures the variables
are in dimensionless units obtained by takingtm51 and the
firing threshold to be unity.! It can be seen that decreasingg
increases the collective periodT, that is, depressive synaps
reduce the mean firing rate in an excitatory network. On
other hand, facilitating synapses increase the firing rate
shown in Fig. 2.~The effects of synaptic depression a
facilitation onT are reversed for inhibitory networks.! Inter-
estingly, it can be seen from Fig. 2 that for fixed positi
couplingg there exists a critical valuegc.1 such that if 1
,g,gc then there exist two nontrivial solution branches f
T, whereas there are no nontrivial solutions wheng.gc .
The upper branch for a giveng and 1,g,gc is the continu-
ation from the activity-independent case and, hence, we s
focus on the stability properties of this solution in subsequ
sections rather than the lower branch. Finally, note that
collective period tends to depend only weakly on the size
the networkN.

III. MEAN-FIELD THEORY

One method for studying the dynamics of a large globa
coupled network is to reformulate the dynamics as a co

FIG. 1. Collective periodT of a splay state in the large-N limit
as a function ofg in the case of synaptic depression. Results
shown forg50.1,0.5,1.0 andI 52.0. Inset: variation ofC`(T) with
g for g50.1 andI 51.1. Dashed portion of curve represents co
tinuation into the facilitating regime (g.1), which corresponds to
the upper branch of Fig. 2 forg50.1.
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nuity equation describing a flow of phases@8,9#. An alterna-
tive approach@10–12#, which we shall follow here, is to
construct a mean-field equation for the population activit

A~ t !5 lim
N˜`

1

N (
j 51

N

(
mPZ

d~ t2Tj
m!. ~3.1!

HereA(t)Dt determines the fraction of neurons firing in th
small interval of timeDt. In the mean-field limit all oscilla-
tors have the same synaptic inputR(t),

R~ t !5E
0

`

J~t!X~ t2t!dt, ~3.2!

whereX(t) is an additional macroscopic variable@see Eqs.
~2.1! and ~2.3!#,

X~ t !5 lim
N˜`

1

N (
j 51

N

(
mPZ

C~Tj
m!d~ t2Tj

m!. ~3.3!

In the case of activity-independent synapses,X(t) reduces to
A(t).

Suppose that if an oscillator last fired at timet̂ , then it
fires again with probability one at timet5 t̂1T( t̂ ). It follows
that in the mean-field limit, the activityA(t) satisfies the
integral equation@12#

A~ t !5E
2`

t

d@ t2 t̂2T~ t̂ !#A~ t̂ !d t̂5F11
dT

d t̂
G21

A~ t2T!.

~3.4!

In order to obtain a closed system of equations, it is fi
necessary to express the functionT( t̂ ) in terms of the mean
field R(t). Let us solve the IF equation~2.1! in the mean-
field limit for successive firing timest̂ and t̂1T. This leads
to the implicit equation

15I @12e2T#1gE
0

T

es2TR~s1 t̂ !ds. ~3.5!

Differentiating both sides of Eq.~3.5! with respect tot̂ then
gives

e

-

FIG. 2. Collective periodT of a splay state in the large-N limit
as a function ofg in the case of synaptic facilitation. Hereg
50.1,0.2 andI 51.1. Beyond a critical value ofg there no longer
exists a nonzero solution forT. For a giveng, the upper branch is
the continuation of the nontrivial activity-independent solution
g51.
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dT

d t̂
52

gE
0

T

es2TR8~s1 t̂ !ds

I 211gR~ t̂1T!
. ~3.6!

In the case of activity-independent synapses,~3.4! and ~3.6!
form a closed system of equations, sinceR(t)5*0

`J(t)A(t
2t)dt. Unfortunately, this is no longer true for dynam
synapses, sinceR(t) then satisfies Eq.~3.2! with the macro-
scopic dynamics ofX(t) still undetermined. Constructing
dynamical mean-field equation forX(t) does not appear pos
sible unless additional approximations are made. Here
shall work within a linear approximation scheme, which
used to analyze the stability of the splay state.

In the mean-field limit the splay state is a state with tim
independent activity for whichA(t)5A0[1/T and X(t)
5X0[C`(T)A0, where T is the solution to the self-
consistency equation~2.16!. Consider perturbations abou
the splay state of the form

a~ t ![A~ t !2A05ã~l!elt, x~ t ![X~ t !2X05 x̃~l!elt,
~3.7!

wherelPC. Substituting~3.7! into ~3.2! implies thatR(t)

5X01eltJ̃(l) x̃(l) andR8(t)5eltl J̃(l) x̃(l), whereJ̃(l)
is the Laplace transform~2.15!. Substituting Eq.~3.6! into
~3.4! and expanding to first order inã(l) and x̃(l) then
gives

ã~l!@elT21#5gA0x̃~l!
l J̃~l!

@11l#
@elT2e2T#@eT21#.

~3.8!

We have used the result thatI 211gA0C`(T)5@eT21#21

@see Eq.~2.16!#.
It remains to derive an expression forx̃(l) in terms of

ã(l). This will be accomplished by linearizing Eqs.~3.1!
and ~3.3! about the splay state, and using this to construc
linear differential equation forx(t) in terms ofa(t). In order
to carry out this linearization procedure, it is necessary
consider perturbations of the individual firing times~see Sec.
V!. Let T̂k

m5(m1k/N)T denote the firing times of the spla

state and consider the perturbed stateTk
m5T̂k

m1uk
m with uk

m

5ake
mlT. Expanding Eq.~3.3! to first order inak using Eq.

~2.5! yields the linear equation

x~ t !'C`~T!Fa~ t !2~g21!G~lT! lim
N˜`

1

N

3 (
k51

N

(
mPZ

emlTakd~ t2T̂k
m!G , ~3.9!

where

G~l!5 (
m8,m

ĝm2m821e2(m2m8)T/tc~12e2(m2m8)l!

5F e2T/tc

12ĝe2T/tc
2

e2T/tc2l

12ĝe2T/tc2lG . ~3.10!
e

-

a

o

Similarly, expanding Eq.~3.1! gives

a~ t !'2 lim
N˜`

1

N (
k51

N

(
mPZ

emlTakd8~ t2T̂k
m!. ~3.11!

Hence, comparison of Eqs.~3.9! and ~3.11! leads to the lin-
ear differential equation@valid to first order ina(t)]

dx~ t !

dt
5C`~T!Fda

dt
1~g21!G~lT!a~ t !G . ~3.12!

@More precisely, this relationship between the two distrib
tions a(t) and x(t) should be formulated in terms of inte
grals *2`

` f (t)a(t)dt and *2`
` f (t)a(t)dt for an arbitrary

smooth functionf (t) such that*2`
` f (t)dt,`.# Substituting

Eq. ~3.7! into Eq. ~3.12! yields the result

x̃~l!5C`~T!ã~l!F11
~g21!

l
G~lT!G . ~3.13!

Finally, combining Eqs.~3.8! and~3.13!, we obtain the char-
acteristic equation

~elT21!5gL~T!@l1~g21!G~lT!#
J̃~l!

11l
~elT2e2T!,

~3.14!

whereL(T)5$@C`(T)#/T%(eT21).
Note that there are two majorg-dependent contributions

to Eq.~3.14! for a givenT. First, there is a static contributio
associated with a simple rescaling of the coupling accord
to g˜C`(T)g. Second, there is a dynamic contribution re
resented by the term (g21)G(lT) in Eq. ~3.14!. Although
the static contribution accounts for the qualitative nature
the effect of synaptic depression/facilitation on stability
described below, it underestimates the size of this effect

In the weak-coupling regime, solutions of Eq.~3.14! are
of the form lT52p in1Ln for integer n and Ln5O(g).
The termLn can be calculated by performing a perturbati
expansion in the couplingg. The lowest order contribution is
simply determined by settinglT52p in on the right-hand
side of Eq.~3.14!:

Ln5gL~T!~12e2T!S 2p in

T12p in D J̃~2p in/T!1O~g2!.

~3.15!

It follows from Eq.~3.15! that dynamic synapses do not alt
the weak-coupling stability of a splay state other than in
rectly through a modification of its collective periodT ~see
Figs. 1 and 2!. Therefore, we can apply the stability resu
previously obtained for activity-independent synaps
@9,11,12#.

~1! For zero axonal delays (ta50) and excitatory cou-
pling (g.0), the splay state is stable with respect to exci
tion of thenth mode if and only ifa,an , where

an5211A114n2p2/T2. ~3.16!

Hence, it is stable for sufficiently slow synapses, that isa
,a1. The splay state is always unstable in the case of
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hibitory coupling, since the condition for stability with re
spect to thenth harmonic is nowa.an , which cannot be
satisfied for alln.

~2! The splay state is almost always unstable for nonz
delays~in the noise-free case!.

~3! For largen, uLnu;1/n2 so that higher harmonics grow
or decay slowly.

Note that although the zero delay case is a singular li
in the absence of noise, it becomes nonsingular for arbitra
small amounts of noise, where instabilities with respect
higher harmonics are suppressed~see Refs.@9,11,12# and
Sec. IV!. Finite-size effects play a similar role, for, as will b
shown in Sec. V, Eq.~3.14! still holds for finiteN except that
n is now restricted to values in the range 0<n<N21 @andg
is scaled by a factorN/(N21)].

A numerical investigation of the zero delay case w
activity-independent synapses and excitatory coupling sh
that increasingg can stabilize the splay state for values
a.a1 @9#. This occurs due to eigenvalues associated w
low order harmonics crossing over into the left-half comp
plane. We shall investigate how this result depends ong. Set
lT5 ib,bPR in Eq. ~3.14! and equate real and imagina
parts to obtain the pair of equations

cos~b!215gL~T!S ~g21!q0~b!P0~b!

2FbT 1~g21!q1~b!GP1~b! D , ~3.17!

sin~b!5gL~T!S FbT 1~g21!q1~b!GP0~b!

1~g21!q0~b!P1~b! D , ~3.18!

whereq0(b)5ReG( ib),q1(b)5Im G( ib),

P0~b!5@cos~b!2e2T#p0~b!2sin~b!p1~b!,

P1~b!5sin~b!p0~b!1@cos~b!2e2T#p1~b!,

and p0(b)5Re@ J̃( ib/T)/(11 ib/T)#, p1(b)5Im @ J̃( ib/
T)/(11 ib/T)#. For a given couplingg, we search for the
smallesta for which a nonzero solutionb of Eqs.~3.17! and
~3.18! exists. The results are shown in Fig. 3 for synap
depression. It can be seen that increasing the degree of
aptic depression~by reducingg) leads to a reduction in the
critical inverse rise time for destabilization of the splay sta
In other words, synaptic depression decreases the regio
the (g,a21) plane over which the splay state is stable. T
g-dependent shift in the stability curves can be underst
qualitatively in terms of the static rescaling of the coupli
g˜gC`(T). SinceC`(T),1 for synaptic depression~see
inset of Fig. 1!, there is an effective reduction in the couplin
that results in destabilization. This effect is further enhan
by dynamic contributions@associated with the term (g
21)G(lT) in Eq. ~3.14!#. On the other hand, synaptic fa
cilitation has a stabilizing effect in the sense that it enlar
the region of stability as shown in Fig. 4. This is qualitative
o

it
ly
o

s

h

yn-

.
in

e
d

d

s

consistent with an effective increase in the couplingg
˜gC`(T) with C`(T).1 for synaptic facilitation.

IV. NOISE

One of the powerful features of the MFT approach
population dynamics is that it provides an analytically tra
table framework for incorporating the effects of noise, whi
can be achieved through a generalization of the activity
tegral equation~3.4! @12,27#. Suppose for simplicity that the
dynamics is described by a renewal process. That is, th
exists a conditional probability densityPX(tu t̂ ) such that
PX(tu t̂ )dt is the probability of firing in the interval@ t,t
1dt# given that the last spike occurred att̂ . The subscriptX
indicates that the probability density depends on the ti
course of the mean fieldX(t8) @Eq. ~3.3!# for t8,t. The
integral equation~3.4! for the population activityA(t) now
becomes

A~ t !5E
2`

t

PX~ tu t̂ !A~ t̂ !d t̂, ~4.1!

with A appropriately normalized@27#.
There are various ways of introducing noise into an

network, including threshold noise, reset noise, and in
noise @27#. Here we shall consider a phenomenological a
proach in which additive noise is introduced directly into t

FIG. 3. Destabilizing effect of synaptic depression in an exc
tory network with zero axonal delays and finite rise timea21. The
boundary curve separating stable and unstable regions of the s
state is shown for various values ofg and fixed external inputI
51.5. Stability holds above each boundary curve.

FIG. 4. Stabilizing effect of synaptic facilitation in an excitato
network with zero axonal delays and finite rise-timea21. The splay
state with the largest collective period is selected~see Fig. 2!. The
boundary curve separating stable and unstable regions of the s
state is shown for various values ofg and fixed external inputI
51.1. Stability holds above each boundary curve.



ha

t
si
ri

an

n

n

ime-

ke

t in

PRE 60 2165MEAN-FIELD THEORY OF GLOBALLY COUPLED . . .
firing times. First, solve Eq.~2.1! in the mean-field limit for
a sequence of firing times$Tj

n ,nPZ%. The resulting iterative
equation for the firing times can be written in the form

eTj
n11

@ I 211gY~Tj
n11!#5eTj

n
@ I 1gY~Tj

n!#, ~4.2!

where

Y~ t !5E
0

`

Ĵ~t!X~ t2t!dt, Ĵ~t!5E
0

t

es2tJ~s!ds.

~4.3!

This leads to the following implicit equation forTj
n11 as a

function of Tj
n :

Tj
n115Tj

n1H~Tj
n ,Tj

n11!, ~4.4!

where

H~ t,t8!5 lnF gY~ t !1I

gY~ t8!1I 21
G . ~4.5!

A stochastic IF model is now introduced by assuming t
the firing times evolve according to the additive process

Tj
n115Tj

n1H~Tj
n ,Tj

n11!1j j
n , ~4.6!

where j j
n , for integer n and j 51, . . . ,N, are independen

random variables generated from a given probability den
r. We shall assume that the width of the probability dist
bution is sufficiently narrow that the domain ofr can be
taken to be the whole real line. A further simplification c
be obtained by takingY(t) to be a sufficiently slow function
of time so thatH(Tj

n ,Tj
n11)'H(Tj

n ,Tj
n1DTj

n) with DTj
n

5H(Tj
n ,Tj

n), which is uncorrelated withj j
n . Under this ap-

proximation, Eq.~4.6! describes a renewal process with co
ditional probability density

PX~ tu t̂ !5r„t2H~ t̂ ,t* !2 t̂…, ~4.7!
t

t

ty
-

-

wheret* 5 t̂1H( t̂ , t̂ ). We shall use Eq.~4.1! and the condi-
tional probability density~4.7! to investigate how noise ca
affect the stability of the splay state.

As in the noise-free case, define the splay state as a t
independent stateA(t)5A0 and X(t)5X0. It follows from
Eq. ~4.6! that the firing times of the splay state~denoted by
T̂j

n) evolve according to the simplified equation

T̂j
n115T̂j

n1H~X0!1j j
n , ~4.8!

with

H~X!5 lnF gX1I

gX1I 21G . ~4.9!

The activityA0 is equal to the inverse of the mean interspi
interval, that is,

1

A0
[T5E jr„j2H~X0!…dj5H~X0!1 j̄. ~4.10!

For convenience we shall takej̄50. The constant fieldX0 is
obtained from Eq.~3.3! as

X05 (
mPZ

^C~ T̂m!d~ t2T̂m!&, ~4.11!

where ^C(T̂m)&5 limN˜`( i 51
N C(T̂i

m)/N etc. For self-
consistency, we require that the right-hand side of Eq.~4.11!
is t independent. One way to ensure this is to assume tha
the large-N limit the following approximation holds:

X0' (
mPZ

^C~ T̂m!&^d~ t2T̂m!&5C̄~T!A0 , ~4.12!

where~for synaptic depression!
C̄~T!511~g21! (
m8,m

gm2m821^e2(T̂m2T̂m8)/tc&

511~g21! (
m8,m

gm2m821e2(m2m8)T/tc^e2(jm1jm211 . . . 1jm8)/tc&5
12ke2T/tc

12gke2T/tc
. ~4.13!
he
We have used the fact that thej i
n are uncorrelated, so tha

^e2(jm1jm211 . . . 1jm8)/tc&5km2m8 with k5e2j/tc. A result
similar to Eq.~4.13! holds for synaptic facilitation:

C̄~T!5
11~g22!ke2T/tc

12ke2T/tc
. ~4.14!

It follows from Eqs. ~4.10! and ~4.12! that the collective
period of oscillations satisfies Eq.~2.16! with C`(T) re-
placed byC̄(T).
In order to determine the stability of the splay state in t
presence of noise, consider perturbations of the form~3.7!.
Linearization of the integral equation~4.1! about the splay
state gives

ã~l!@12 r̃0~l!#5gA0

l x̃~l!J̃~l!

11l
@eT21#

3@elT2e2T#r̃0~l!, ~4.15!

where
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FIG. 5. Stability of the splay state as a function of excitatory couplingg and rise timea21 in the presence of synaptic depression a
noise. The boundary curve above which the splay state becomes stable is shown forI 51.1, ta50, and various values of the standa
deviations. ~a! g51 ~activity-independent synapses!. ~b! g50.5 ~synaptic depression!.
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r̃0~l!5E
0

`

r@s2H~A0!#e2slds. ~4.16!

Following arguments similar to the deterministic case~Sec.
III !, it can be shown thata(t) andx(t) are related according
to the linear equation~3.12! under the replacementsC`(T)
˜C̄(T) and G(l)˜Ḡ(l), with C̄(T) satisfying Eq.~4.13!
or ~4.14! and

Ḡ~l!5
ke2T/tc

12ĝke2T/tc
2

ke2T/tc2l

12ĝke2T/tc2l
. ~4.17!

@We are again assuming that the approximation~4.12! is
valid.# We conclude that in the presence of noise, the ch
acteristic equation for the splay state takes the form

12 r̃0~l!5gL̄~T!@l1~g21!Ḡ~lT!#

3
J̃~l!

11l
~elT2e2T!r̃0~l!, ~4.18!

where Ḡ(l)5@C̄(T)/T#(eT21). In the deterministic limit
r̃0(l)˜e2lT with A051/T andT satisfying Eq.~2.16!, Eq.
~4.18! reduces to Eq.~3.14!.

It is clear from Eq.~4.18! that in the weak-coupling re
gime, solutionsl must have negative real part in order f

FIG. 6. Stability of the splay state as a function of inhibito
couplingugu and inverse rise timea for synaptic depression withou
noise. The stability boundary curves for the first two harmonicn
51,2 are shown forI 52.0, ta50 and various values ofg. A mode
is stable above its boundary curve.
r-

the left-hand side of~4.18! to beO(g). Therefore, we expec
the stability of the splay state to persist to arbitrarily lar
values ofa wheng is sufficiently weak. Moreover, since th
modulus of the right-hand side vanishes whenulu˜` it fol-
lows that high order harmonics are suppressed. Con
quently, the critical value ofa for destabilization of an ex-
citatory network with zero axonal delays and intermediate
strong couplingg should increase with the level of noise
This is indeed found to be the case, both for activi
independent synapses@see Fig. 5~a! and Refs.@9,11## and
dynamic synapses@see Fig. 5~b!#. In the construction of Fig.
5 ~and subsequent figures! we have takenr(j)5e2j2/2s2

with standard deviations!T so thatr̃(l)'e2lT1l2s2/2 and

k5es2/2tc
2
. Another important consequence of noise is tha

can stabilize the splay state in an inhibitory network by su
pressing higher harmonics@9#. This is illustrated in Figs. 6
and 7 where we plot the stability boundary curves for t
first two harmonics as a function ofa andugu with ta50. It
can be seen that noise reduces the region of instability
these modes. Such an effect increases with the ordern so that
the splay state is stable in the region outside the bound
curves of the low harmonics. In particular, the splay state
stable for alla when the coupling is sufficiently weak. In
terestingly, in the presence of noise, synaptic depression
actually have a stabilizing effect provided that the coupli

FIG. 7. Stability of the splay state as a function of inhibito
coupling ugu and inverse rise timea in the presence of synapti
depression and noise (s50.01). The stability boundary curves fo
the first two harmonicsn51,2 are shown for activity-independen
synapses~solid lines! and depressive synapses withg50.5 ~dashed
lines!. HereI 52.0 andta50. A mode is stable outside its bound
ary curve.
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is not too large. Indeed, Figs. 5~b! and 7 show that the sta
bility boundary curves are shifted over to larger values ofugu
wheng is reduced from unity. An analogous result is fou
in excitatory networks with nonzero axonal delays as illu
trated in Fig. 8. We plot the boundary curves of the first t
harmonics as a function ofs andta for fixed a andg. The
region of stability outside the boundary curves of the low
harmonics is enlarged by depressive synapses. As in
noise-free case, these results can be understood qualitat
in terms of rescaling of the coupling according tog
˜gC`(T).

V. FINITE NETWORKS

In this section we analyze the stability of the splay a
in-phase states of a globally coupled IF network directly
terms of the firing times. This will be used to determine ho
the results of mean-field theory are modified for finite n
works ~in the absence of noise!. Following along lines simi-
lar to Refs.@20,21#, integrate Eq.~2.1! from Tj

n to Tj
n11 to

generate the nonlinear firing time map

eTj
n11

5I @eTj
n11

2eTj
n
#1gN(

kÞ j
(

mPZ
C~Tk

m!

3F E
Tj

n

Tj
n11

etJ~ t2Tk
m!dtG . ~5.1!

Set Tj
n5(n1 j x/N)T1uj

n , whereuj
n represents a perturba

tion of the splay (x561) or in-phase (x50) states, and
expand Eq.~5.1! as a power series in the perturbationsuj

n .
To O(1) we recover Eq.~2.11! for the collective periodT,
whereas theO(u) terms lead to an infinite-order linear di
ference equation given by

AN@uj
n112uj

n#5gN(
kÞ j

(
mPZ

B1@n2m1~ j 2k!x/N#

3@uk
m2uj

n#1~g21!gN

3(
kÞ j

(
mPZ

B0@n2m1~ j 2k!x/N#dk
m@u#,

~5.2!

FIG. 8. Stability of the splay state as a function of axonal de
ta and noises for an excitatory network. The stability boundar
curves for the first two harmonicsn51,2 are shown for activity-
independent synapses~solid lines! and depressive synapses withg
50.5 ~dashed lines!. For eachg the single high peak corresponds
n51 and the pair of lower peaks corresponds ton52. The delayta

has been scaled by the collective periodT ~which is approximately
independent ofs andt for weak coupling!; the stability diagram is
periodic with respect toT. We have takenI 51.1, a510, andg
50.1. A mode is stable outside its boundary curve.
-

r
he
ely

-

where

AN5I 211gNC`~T! (
k51

N21

(
mPZ

J~@m1kx/N#T!, ~5.3!

B0~f!5C`~T!E
0

T

et2TJ~ t1fT!dt, B1~f!5
1

T

dB0~f!

df
,

~5.4!

and

dk
m@u#5 (

m8,m

ĝm2m821e2(m2m8)T/tc@uk
m2uk

m8#, ~5.5!

with ĝ defined by Eq.~2.6!. Note thatBr(f)50 for r 50,1
andf,21 so that Eq.~5.2! does not violate causality.

The linear map~5.2! has a discrete spectrum that can
found by taking

uk
m5emlak , ak5ek(lx12p ip)/N ~5.6!

with lPC, 0<Im l,2p, andp50, . . . ,N21. This gener-
ates the characteristic equation

AN@el21#5g@B̃1N~l,p!2B̃1N~0,0!

1~g21!B̃0N~l,p!G~l!#, ~5.7!

where

B̃rN~l,p!5
1

N21 (
k51

N21

(
mPZ

Br~m1kx/N!

3e2(m1kx/N)le22p ipk/N ~5.8!

for r 50,1 andG(l) is defined according to Eq.~3.10!. Note
that BrN(l,p) and G(l) are analytic functions ofl in the
right-half complexl plane, but have a countable number
poles in the left-half plane. This can be seen explicitly in t
case of G(l), Eq. ~3.10!, which has poles atl52@T

1u ln(ĝ)u#12pin,nPZ, arising from the analytic continuation
of the geometric series. The semianalyticity ofB̃rN reflects
causality. One solution of Eq.~5.7! is l50,p50, which re-
flects invariance of the dynamics with respect to unifo
phase shifts of the firing times,Tj

m
˜Tj

m1u for all j ,m.
Therefore, the condition for linear stability of a splay or i
phase state is that all remaining solutions of Eq.~5.7! satisfy
Re l,0.

Let us now consider the splay state by settingx51. Us-
ing the Appendix, we can rewrite Eqs.~5.3! and ~5.8! as

AN5I 211g
C`~T!

T F J̃~0!2
1

N21 (
nÞ0

J̃~2p in/T!G ,
~5.9!

whereJ̃(l) is the Laplace transform~2.15!, and

B̃rN~l,p!5B̃r~l12p ip !2
1

N21 (
nÞ0

B̃r~l12p i @p1n# !,

~5.10!

y
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with

B̃r~l![E
2`

`

e2lfBr~f!df

5
C`~T!

T
~el2e2T!

@l/T# r

11l/T
J̃~l/T! ~5.11!

and Br(f) defined by Eq.~5.4!. Substitute Eqs.~5.9! and
~5.10! into the characteristic equation~5.7! and take the
large-N limit. This generates the characteristic equation

~el21!S I 211g
C`~T!

T D5g@B̃1~l12p ip !2B̃1~0!

1~g21!B̃0~l12p ip !G~l!#,

~5.12!

where pPZ. Recall that 0<Im l,2p. Therefore, in Eq.
~5.12! we can absorb 2p ip into the definition ofl by ex-
tending the domain ofl to the whole complex plane. Afte
substituting forB̃r using Eq.~5.11! and performing a rescal
ing l˜lT, we recover the mean-field characteristic equ
tion ~3.14!.

For finite N, the modifications to the characteristic equ
tion ~5.12! can be deduced from Eq.~5.9! and ~5.10!. We
shall illustrate this in the case of weak coupling. For su
ciently smallugu, all solutions of Eq.~5.7! in the complexl
plane will be either in a neighborhood of the real soluti
l50 or in a neighborhood of one of the poles
B̃rN(l,p),G(l). Since the latter all have negative real par
the stability of phase-locked solutions will be determined
the eigenvalues around the origin. Therefore, expanding
~5.7! in powers ofl and using Eq.~5.3! shows that

l@ I 21#5g@B̃1N~0,p!2B̃1N~0,0!#1O~g2!. ~5.13!

Using the fact thatB̃1N(0,p)2B̃1N(0,0)5NB̃1(2p ip)/(N
21) whenx51 @see Eq.~5.10!#, it follows that Eq.~5.13!
reduces to Eq.~3.15! with 0<n<N21 and g˜Ng/(N
21). This also implies that higher harmonics are suppres
in finite networks. Consequently, for inhibition this confirm
the result of Chow@22# that the splay state can be stable f
finite N, even though in the mean-field limit the asynchr
nous state is unstable.

VI. IN-PHASE STATE

So far we have focused on how dynamic synapses af
the existence and stability of the splay state. In this fi
section we briefly discuss some results concerning the
chronous or in-phase state. The linearized map of the fi
times for this state is given by Eq.~5.2! with x50. For large
N, it can be rewritten in the form
-

-

-

,
y
q.

ed

-

ct
l
n-
g

A@uj
n112uj

n#5g (
mPZ

B1~n2m!@^um&2uj
n#1g~g21!

3 (
mPZ

B0~n2m! (
m8,m

Gmm8@^u
m&2^um8&#,

~6.1!

with Gmm85ĝm2m821e2(m2m8)T, A5I 211g(mPZJ(mT),
and

^um&5 lim
N˜`

1

N (
j 51

N

uj
m . ~6.2!

Following Ref.@18#, we appeal to the law of large numbe
and assume that for largeN the mean perturbation̂um&'0
for all m. Equation ~6.1! then simplifies to the one
dimensional, first-order mapping

uj
n115F12

gC`~T!K8~0,T!

A Guj
n[bTuj

n . ~6.3!

SinceC`(T).0 andA.0, equation~6.3! implies that the
in-phase state will be stable in the large-N limit if ubTu,1,
that is, if gK8(0,T).0. This is a version of the mode
locking theorem of Gerstner, van Hemmen, and Cow
@18#, which we have shown extends to the case of a glob
coupled IF network with dynamic synapses. One finds fr
Eqs.~2.2! and ~2.12! that for ta50 and inhibitory coupling
(g,0) the synchronous state is stable for all 0,a,`. If
the discrete delayta is increased from zero, then alternatin
bands of stability and instability are created that are perio
in ta with period T ~see Fig. 9!. This periodicity can be
deduced from the following Fourier series representation
K(f,T):

K~f,T!5a2
12e2T

T (
mPZ

e2p imf

3
e22p imta /T

@a12p im/T#2@112p im/T#
. ~6.4!

FIG. 9. Stability of the in-phase statef50 as a function of the
dimensionless variables@aT#21 andta /T for weak excitatory cou-
pling. Stable and unstable regions are denoted bys andu, respec-
tively. The stability diagrams are periodic inta with periodT.
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It is clear from Eq.~6.4! that changes inT due to variation of
the parameterg ~characterizing the degree of depression
facilitation! will alter stability through the dependence
sign@K8(f,T)# on the dimensionless parametersaT and
ta /T.

Elsewhere we have shown that reducing the size of
network can induce new instabilities. For example, an inh
tory network ofN IF oscillators anda-function synaptic in-
teractions can desynchronize in the strong-coupling regi
leading to oscillator death~a state in which some neuron
suppress the activity of others!. More precisely, there exists
critical inverse rise timeac(N) such that the in-phase state
stable for arbitrary couplingg whena.ac(N) but becomes
unstable at some critical couplinggc(N) when a,ac(N).
Moreover, limN˜`ac(N)50 so that the mean-field result
recovered in the large-N limit @28#.

VII. CONCLUSION

In this paper we used mean-field techniques to explore
effects of dynamic synapses on mode locking in a homo
neous IF oscillator network. A number of results were o
tained.

~1! Synaptic depression increases~decreases! the collec-
tive period of oscillations of the splay state in an excitato
~inhibitory! network. The opposite holds for synaptic faci
tation.

~2! In the noise-free case, depressive synapses ten
have a destabilizing effect in the sense that they reduce
parameter domain over which the splay state is stable. On
other hand, synaptic facilitation tends to have a stabiliz
effect. These modifications in stability involve a static co
tribution arising from a rescaling of the coupling streng
according tog˜C`(T)g, which is further enhanced by dy
namic contributions associated with adaptation of the s
apses.

~3! Synaptic depression can enhance the stabilizing
fects of noise on the splay state for sufficiently weak co
pling. As in the noise-free case, this effect has both a st
contribution arising from a rescaling of the couplingg and a
dynamic contribution.

~4! In the large-N limit, the stability criterion for the in-
phase state isgK8(0,T).0, irrespective of the degree o
synaptic depression or facilitation, withK(f,T) given by
Eq. ~2.12!. However, dynamic synapses do influence stabi
indirectly through changes in the collective periodT.

In future work we shall investigate the more general pro
ci.
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lem of phase-locking instabilities in networks of puls
coupled IF neurons with dynamic synapses. It has rece
been shown that, in the case of activity-independent syna
and strong coupling, phase-locked states can bifurcate
states exhibiting more complex forms of behavior includi
oscillator death, periodic bursting, and spatially periodic
tivity patterns@20,21#. It will be of interest to determine how
these bifurcations are modified by synaptic depression
facilitation.
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APPENDIX

Let F(t) be an arbitrary function oft such that
*2`

` F(t)dt,`. Define the averagê̂ F&&N according to

^^F&&N5
1

N21 (
j 51

N21

(
mPZ

F~@m1 j /N#T!. ~A1!

In terms of the Fourier transform ofF(t),

^^F&&N5
1

N21 (
j 51

N21

(
mPZ

E
2`

`

eiv(m1 j /N)TF̃~v!
dv

2p

5
1

N21

1

T (
j 51

N21

(
nPZ

F̃~2pn/T!ei [2pn j /N]

5
1

T F F̃~0!2
1

N21 (
nÞ0

F̃~2pn/T!G , ~A2!

where

F̃~v!5E
2`

`

e2 ivtF~ t !dt. ~A3!

In the large-N limit, we obtain the result

^^F&&`[ lim
N˜`

^^F&&N5
1

TE2`

`

F~ t !dt. ~A4!
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